








 

1 

 

Billing Code 3290-F8 

OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE 

[Docket Number USTR-2018-0001] 

Exclusion of Particular Products From the Solar Products Safeguard Measure 

AGENCY: Office of the United States Trade Representative. 

ACTION: Notice. 

SUMMARY: Pursuant to authority provided by the President, the U.S. Trade 

Representative (Trade Representative) has determined that particular products should be 

excluded from the safeguard measure applied to certain solar products and is modifying 

subchapter III of chapter 99 of the Harmonized Tariff Schedule of the United States 

(HTS) as set forth in the Annex of this notice to implement these exclusions. 

DATES: The modifications to the HTS set forth in the Annex are applicable with respect 

to articles entered, or withdrawn from a warehouse for consumption, on or after 12:01 am 

EST, on [INSERT DATE OF PUBLICATION IN THE FEDERAL REGISTER]. 

FOR FURTHER INFORMATION CONTACT: Victor Mroczka, Office of WTO and 

Multilateral Affairs, at vmroczka@ustr.eop.gov or (202) 395-9450, or Dax Terrill, Office 

of General Counsel, at Dax.Terrill@ustr.eop.gov or (202) 395-4739. 

SUPPLEMENTARY INFORMATION: 

I. Background 

On November 13, 2017, the U.S. International Trade Commission (ITC) 

submitted a report to the President under section 201 of the Trade Act of 1974, as 

amended (19 U.S.C. 2251), finding that crystalline silicon photovoltaic (CSPV) cells and 

other CSPV products containing these cells are being imported into the United States in 
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such increased quantities as to be a substantial cause of serious injury to the domestic 

industry producing an article that is like or directly competitive with the imported 

products. The scope of this investigation did not cover: 

 Thin film photovoltaic products produced from amorphous silicon (a-Si), cadmium 

telluride (CdTe), or copper indium gallium selenide (CIGS).  

 CSPV cells, not exceeding 10,000 mm2 in surface area, that are permanently 

integrated into a consumer good whose primary function is other than power 

generation and that consumes the electricity generated by the integrated CSPV cell. 

Where more than one CSPV cell is permanently integrated into a consumer good, the 

surface area for purposes of this exclusion is the total combined surface area of all 

CSPV cells that are integrated into the consumer good. 

 CSPV cells, whether or not partially or fully assembled into other products, if such 

CSPV cells were manufactured in the United States. 

The President, taking into consideration the separate recommendations of the ITC 

Commissioners on remedy and the recommendation of the Trade Policy Staff Committee, 

determined to take action and issued Proclamation 9693 on January 23, 2018, to impose a 

safeguard measure with respect to the imported CSPV products. The President 

determined to implement the safeguard measure as: (1) a tariff-rate quota on imports of 

CSPV cells not partially or fully assembled into other products, imposed for a period of 4 

years, with unchanging within-quota quantities and annual reductions in the rates of duty 

applicable to goods entered in excess of those quantities in the second, third, and fourth 

years, as provided in Annex I to the proclamation; and (2) an increase in duties on 

imports of CSPV products containing these cells, imposed for a period of 4 years, with 



 

3 

 

annual reductions in the rates of duty in the second, third, and fourth years, as provided in 

Annex I to the proclamation. 

The proclamation also excluded certain products from application of the 

safeguard measure.  Specifically, the proclamation excluded the following:   

 10 to 60 watt, inclusive, rectangular solar panels, where the panels have the following 

characteristics: (A) length of 250 mm or more but not over 482 mm or width of 400 

mm or more but not over 635 mm, and (B) surface area of 1000 cm2 or more but not 

over 3,061 cm2, provided that no such panel with those characteristics shall contain 

an internal battery or external computer peripheral ports at the time of entry. 

 1 watt solar panels incorporated into nightlights that use rechargeable batteries and 

have the following dimensions: 58 mm or more but not over 64 mm by 126 mm or 

more but not over 140 mm. 

 2 watt solar panels incorporated into daylight dimmers that may use rechargeable 

batteries, such panels with the following dimensions: 75 mm or more but not over 82 

mm by 139 mm or more but not over 143 mm. 

 Off-grid and portable CSPV panels, whether in a foldable case or in rigid form 

containing a glass cover, where the panels have the following characteristics: (a) a 

total power output of 100 watts or less per panel; (b) a maximum surface area of 

8,000 cm2 per panel; (c) does not include a built-in inverter; and where the panels 

have glass covers, such panels must be in individual retail packaging (in this context, 

retail packaging typically includes graphics, the product name, its description and/or 

features, and foam for transport). 
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 3.19 watt or less solar panels, each with length of 75 mm or more but not over 266 

mm and width of 46 mm or more but not over 127 mm, with surface area of 338 cm2 

or less, with one black wire and one red wire (each of type 22 AWG or 24 AWG) not 

more than 206 mm in length when measured from panel edge, provided that no such 

panel shall contain an internal battery or external computer peripheral ports. 

 27.1 watt or less solar panels, each with surface area less than 3,000 cm2 and coated 

across the entire surface with a polyurethane doming resin, the foregoing joined to a 

battery charging and maintaining unit, such unit which is an acrylonitrile butadiene 

styrene (ABS) box that incorporates a light emitting diode (LED) by coated wires that 

include a connector to permit the incorporation of an extension cable. 

In addition to these exclusions, the proclamation directed the Trade Representative to 

publish a notice establishing procedures for interested persons to request the exclusion of 

particular products from the safeguard measure. The proclamation provided that if the 

Trade Representative, in consultation with the Secretaries of Commerce and Energy, 

determines that a particular product should be excluded, the Trade Representative can 

modify the HTS provisions created in Annex I of the proclamation to exclude the 

particular product from the safeguard measure through publication of the determination 

in the Federal Register. 

On February 14, 2018, the Office of the United States Trade Representative 

(USTR) published a notice establishing procedures to consider requests for exclusion of 

particular products from the safeguard measure. The notice provided that requests for 

exclusion should identify the particular product in terms of the physical characteristics 

(e.g., dimensions, wattage, material composition, or other distinguishing characteristics) 
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that distinguish it from other products that are subject to the safeguard measures. USTR 

noted that it would not consider requests that identify the product at issue in terms of the 

identity of the producer, importer, or ultimate consumer; the country of origin; or 

trademarks or tradenames. Furthermore, USTR confirmed that it only would grant those 

exclusions that do not undermine the objectives of the safeguard measure. 

Pursuant to that notice, USTR received 48 product exclusion requests and 213 

subsequent comments responding to various requests. The types of products for which 

USTR received an exclusion request generally fall into seven categories: (1) products that 

consist of attachments or other parts that can be mounted to solar products; (2) products 

that constitute 72-cell or greater panels; (3) products with particular configurations for 

additional performance; (4) products with specialized functions; (5) consumer and 

specialty products; (6) bifacial panels and bifacial solar cells; and (7) solar cells without 

busbars or gridlines and panels containing these solar cells.       

II. Exclusions From the Safeguard Measure 

USTR has considered certain requests for exclusion of particular products and 

determined that exclusion of the CSPV products described in subdivisions (c)(iii)(7) 

through (c)(iii)(14) of U.S. note 18 to subchapter III of chapter 99 of the HTS, as 

amended in the Annex to this notice, from the safeguard measure established in 

Proclamation 9693 would not undermine the objectives of the safeguard measure. 

Therefore, USTR finds that these CSPV products should be excluded from the safeguard 

measure. Accordingly, under the authority vested in the Trade Representative by 

Proclamation 9693, the Trade Representative modifies the HTS provisions created by the 

Annex to Proclamation 9693 as set forth in the Annex to this notice.   



 

6 

 

III. Past Requests Not Addressed in This Notice 

The Trade Representative has not at this time made a determination with respect 

to the requests for exclusion, received as of March 16, 2018, that are not addressed in the 

Annex to this notice. USTR will continue to evaluate those requests and the Trade 

Representative will make the appropriate determination in due course.  

IV. Future Requests 

At this time, USTR is not considering additional requests for exclusion beyond 

those received as of March 16, 2018. USTR will monitor developments in the U.S. 

market for CSPV products and, if warranted, provide an opportunity to submit additional 

requests for exclusion at a future date. 

V. Annex 

The following provisions supersede those currently in the HTS and are effective 

with respect to articles entered, or withdrawn from a warehouse for consumption, on or 

after 12:01 a.m., EST, on [INSERT DATE OF PUBLICATION IN THE FEDERAL 

REGISTER]. The HTS is modified as follows: 

(1) U.S. note 18 to subchapter III of chapter 99 of the HTS is modified: 

(a) By inserting the following new subdivisions in numerical sequence at the end of 

subdivision (c)(iii): 

“(7) off-grid, 45 watt or less solar panels, each with length not exceeding 950 mm and 

width of 100 mm or more but not over 255 mm, with a surface area of 2,500 cm2 or less, 

with a pressure-laminated tempered glass cover at the time of entry but not a frame, 

electrical cables or connectors, or an internal battery; 
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(8) 4 watt or less solar panels, each with a length or diameter of 70 mm or more but not 

over 235 mm, with a surface area not exceeding 539 cm2, and not exceeding 16 volts, 

provided that no such panel with these characteristics shall contain an internal battery or 

external computer peripheral ports at the time of entry; 

(9) solar panels with a maximum rated power of equal to or less than 60 watts, having the 

following characteristics, provided that no such panel with those characteristics shall 

contain an internal battery or external computer peripheral ports at the time of entry:  (A) 

length of not more than 482 mm and width of not more than 635 mm or (B) a total 

surface area not exceeding 3,061 cm2;   

(10) flexible and semi-flexible off-grid solar panels designed for use with motor vehicles 

and boats, where the panels range in rated wattage from 10 to 120 watts, inclusive;   

(11) frameless solar panels in a color other than black or blue with a total power output of 

90 watts or less where the panels have a uniform surface without visible solar cells or 

busbars; 

(12) solar cells with a maximum rated power between 3.4 and 6.7 watts, inclusive, having 

the following characteristics: (A) a cell surface area between 154 cm
2
 and 260 cm

2
, 

inclusive, (B) no visible busbars or gridlines on the front of the cell, and (C) more than 

100 interdigitated fingers of tin-coated solid copper adhered to the back of the cell, with 

the copper portion of the metal fingers having a thickness of greater than 0.01 mm; 

(13) solar panels with a maximum rated power between 320 and 500 watts, inclusive, 

having the following characteristics: (A) length between 1,556 mm and 2,070 mm 

inclusive, and width between 1,014 mm and 1,075 mm, inclusive, (B) where the solar 

cells comprising the panel have no visible busbars or gridlines on the front of the cells, 
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and (C) the solar cells comprising the panel have more than 100 interdigitated fingers of 

tin-coated solid copper adhered to the back of the cells, with the copper portion of the 

metal fingers having thickness greater than 0.01 mm; 

(14) modules (as defined in note 18(g) to this subchapter) incorporating only CSPV cells 

that are products of the United States and not incorporating any CSPV cells that are the 

product of any other country.” 

 

Jeffrey Gerrish, 

Deputy U.S. Trade Representative.
[FR Doc. 2018-20342 Filed: 9/18/2018 8:45 am; Publication Date:  9/19/2018] 
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Robust PV Degradation Methodology
and Application

Dirk C. Jordan, Chris Deline, Sarah R. Kurtz, Gregory M. Kimball, and Mike Anderson

Abstract—The degradation rate plays an important role in
predicting and assessing the long-term energy generation of pho-
tovoltaics (PV) systems. Many methods have been proposed for ex-
tracting the degradation rate from operational data of PV systems,
but most of the published approaches are susceptible to bias due to
inverter clipping, module soiling, temporary outages, seasonality,
and sensor degradation. In this paper, we propose a methodology
for determining PV degradation leveraging available modeled
clear-sky irradiance data rather than site sensor data, and a robust
year-over-year rate calculation. We show the method to provide
reliable degradation rate estimates even in the case of sensor drift,
data shifts, and soiling. Compared with alternate methods, we
demonstrate that the proposed method delivers the lowest uncer-
tainty in degradation rate estimates for a fleet of 486 PV systems.

Index Terms—Degradation rates, durability, photovoltaic (PV)
field performance, PV lifetime, reliability.

I. INTRODUCTION

THE long-term performance and stability of photovoltaics
(PV) modules has great impact on the economics of PV in-

stallations. Degradation rates have been summarized by Jordan
et al. and recently updated [1]. Historically, long-term perfor-
mance has been expressed as a function of initial energy gener-
ation and a longer term degradation rate, resulting in a gradual
decline in annual performance. Implicit is the assumption of
linear performance loss, though many PV degradation mecha-
nisms exhibit marked nonlinearity [2]. SunPower first proposed
to determine a long-term degradation rate applying a year-on-
year method (YOY) [3]. Instead of a single degradation rate, a
distribution of degradation rates is obtained for a single system,
the median of which indicates the overall decline of the system.
More recently, the YOY method was shown to have a reduced
sensitivity to outliers, snow and soiling events [4].

In this paper, we introduce an additional improvement that
avoids errors due to irradiance sensor drift, calibration, soil-
ing, or misalignment. This clear-sky method can be applied
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to any climate and is insensitive to common problems such as
irradiance measurement inaccuracy. Furthermore, this technique
provides a standard approach to assess the health of PV gener-
ation assets.

II. ANALYSIS METHODOLOGY

Here we define degradation rate as a rate of change, with a
negative rate representing a decrease in performance. Comput-
ing the degradation rates of PV systems from time-series data
requires three primary steps which are described here: normal-
ization, filtering, and data analysis.

A. Normalization

This step calculates a unitless performance ratio (PR) metric
with less variability than raw power production data. PR is
typically based on the rated power of the system, the measured
PV power, and site irradiance. In this method, we also normalize
by temperature to generate a temperature-corrected PR:

PR =
P

PSTC ,rated ∗ GP O A
G r e f

∗ (1 + γ ∗ [Tcell − Tref ])
(1)

where P is the measured dc or ac power of the PV system in
watts, PSTC ,rated is the rated power of the PV system in watts,
Gpoa is the plane-of-array irradiance, Gref is the reference irra-
diance 1000 W/m2, γ is the maximum power temperature coef-
ficient in relative %/°C, Tcell is the cell temperature in °C, and
Tref is the reference temperature in °C. We denote the subscript
“STC” for normalization with Tref of 25 °C [5] and “PTC” for
normalization with Tref of 45 °C [6]. Two normalization rou-
tines are compared using (1)—a conventional PR calculation
(PRPTC ), where GPOA and Tcell are measured with field sen-
sors, and a clear-sky method (PRCS ), where GPOA and Tcell are
modeled and therefore insensitive to soiling or long-term drift.
PRCS , or PR relative to clear-sky conditions, requires (1) be
modified as follows:

PRCS =
P

PSTC ,rated ∗ GP O A , c s
G r e f

∗ (1 + γ ∗ [Tcell,cs − Tref ])
(2)

where Gpoa,cs is the modeled clear-sky plane-of-array irradiance
and Tcell,cs is the modeled clear-sky cell temperature. PRCS uses
a static model of expected power that does not change from one
year to the next. Since this model does not account for weather
or cloud effects, only clear-sky conditions can be included in
the subsequent degradation rate calculation.

2156-3381 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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The model of clear-sky irradiance was based on PV sys-
tem configuration data and modeling tools publicly available
in PVLIB [7]. The site details required are longitude, latitude,
time zone, altitude, and PV system mounting configuration. The
ground albedo was assumed to be 20% for all systems in the
study. Using atmospheric turbidity derived from Linke turbidity
parameters, the Ineichen irradiance model generates global hor-
izontal, direct normal and diffuse horizontal irradiance values
[8]. The horizontal irradiance is then transposed to the array
plane using PVLIB’s King transposition model [7].

The model of clear-sky temperature was based on site location
as well as monthly average daytime and nighttime temperatures.
Temperature data were obtained in high-resolution image for-
mat from NASA Earth Observatory with 0.05° spatial resolution
[9]. The source data consisted of monthly long-term average day
and night temperatures, which were then interpolated to 15-min
data using mean values of a rolling 20-day Gaussian window.
The following equation computed the clear-sky ambient tem-
perature:

Tamb,cs =
(Tday − Tnight)

2
∗ cos

(
h + 8.0

24
∗ 2π

)

+
(Tday + Tnight)

2
(3)

where Tday is the average monthly day temperature in °C, Tnight
is the average monthly night temperature in °C, and h is the time
since midnight in hours. The factor 8 in the cosine term is an
empirical factor taking into account the lag between daily peak
irradiance and temperature. Clear-sky cell temperature for an
assumed polymer backsheet and rack-mounted PV system was
then derived from the field validation work of King et al. using
the following relation [10]:

Tcell,cs = Tamb,cs + Gpoa,cs ∗ e−3.56 +
Gpoa,cs

333
. (4)

The parameter gamma (γ) in (1) and (2) is used to capture the
differences in thermal behavior between wafer and thin film PV
cell materials, and is extracted from the PV module datasheets.
Although we expect differences in (4) as a function of PV system
mounting and module construction, the precision of the temper-
ature model contributes less uncertainty than the use of long-
term average ambient temperature data in place of temperature
sensors.

B. Filtering

The filtering step removes data collected during periods of
poor or variable solar resource conditions as well as nonrep-
resentative or biasing data. First, low irradiance conditions are
often associated with nighttime data or with errors due to in-
verter startup and nonuniform irradiance (see Fig. 1). We have
found a low irradiance cutoff of 200 W/m2 to exclude these
start-up issues without removing winter data from high latitude
locations. Second, a clear-sky index (csi) filter is used, where csi
is the ratio of measured irradiance to modeled clear-sky irradi-
ance. Fig. 1(b) indicates the impact of a window filter of variable
width (e.g., +/– 10%) around csi equals to 1. We have evalu-
ated csi filters of width 10% and 20% in this analysis. Third,

Fig. 1. Monthly standard deviation in PRCS (left axis) and remaining data
(right axis) for ranges of (a) low irradiance cut-off and (b) clear-sky index
fraction values.

systems with high dc/ac ratio can be limited during normally
high producing days by the input window of the inverter possi-
bly biasing long-term performance assessment. Therefore, we
filtered out periods of inverter clipping by excluding data dur-
ing which power was >99% of the maximum value. Machine-
learning algorithms to automatically detect inverter clipping
may be useful and incorporated in future work. Finally, an op-
erational filter excluded data outside of a ±30% band around a
3-month rolling median performance index to identify the rare
case where systems are offline for maintenance.

C. Analysis

The analysis step processes the remaining data to compute a
degradation rate based on one of the three methods. In the YOY
method, the rate of change is calculated between two points at
the same time in subsequent years. Calculating such a rate of
change for all data points and all years, results in a histogram
of rates of change, the central tendency of which representing
the overall system performance. Further details on the method-
ology can be found in [3] or [4]. In contrast, the standard least
square regression (SLS) approach uses all data points in a sin-
gle regression by minimization of the difference between the
model and the data. Finally, the quantile regression is a form
of robust regression using quantiles instead of the response
mean. [11] Prior to degradation analysis, the normalized, filtered
15-min data are aggregated over a variable time period. Fig. 2(a)
shows a decreasing standard deviation of YOY deltas with the
number of aggregation days. In general, since long aggregation
periods reduce the number of points considered per regression,
we found that a 7-day aggregation period delivered satisfactory
results. Therefore, unless otherwise stated, 7-day aggregation
levels were used in the remainder of the paper.
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Fig. 2. (a) For the YOY method, increasing the aggregation window results
in lower standard deviation in the distribution of year-on-year deltas. (b) The
YOY method shows the lowest standard deviation in degradation rates compared
with SLS and quantile regression when an inverter is repeatedly analyzed each
month.

Fig. 2(b) shows results of the three analysis approaches (YOY,
SLS, quantile regression) for the fleet of systems considered
in Section IV-B. The YOY method shows the lowest standard
deviation in degradation rates compared with SLS and quantile
regression, suggesting that the YOY method can yield more
consistent degradation estimates.

An example comparison between the two YOY normaliza-
tion methods is shown for an x-Si PV system at NREL in Fig. 3.
The PRPTC using a calibrated pyranometer is overlaid with
the PRCS . For PV systems with well-maintained pyranometers,
both PRPTC and PRCS result in approximately the same degra-
dation rate estimate; however, the PRCS has a higher uncertainty
and seasonality for a variety of reasons such as errors in modeled
temperature and irradiance and snow on the modules. The ana-
lytical method outlined above is also publicly available in “Rd-
tools” allowing customization of the above-listed assumptions.
[12] For example, the albedo assumption may lead to deviation
between the modeled and the measured clear-sky irradiance. As
long as the irradiance model is approximately modeling clear
conditions within this range, we recommend a clear sky in-
dex threshold between 10% and 20% to appropriately exclude
cloudy, variable irradiance conditions but to allow for potential
drift of irradiance sensors.

III. COMMON EVALUATION QUANDARIES

PV systems with verified irradiance sensor calibration and
maintenance are most desirable for long-term performance eval-
uation, and resulted in a cleaner dataset in Fig. 3. Unfortunately,
these conditions are not always met in real-world systems.

Fig. 3. (a) Performance ratio of a single system at NREL using PRPTC and
PRCS as a function of time with respective SLS regression lines. (b) Year-on-
year aggregated histograms for the respective PR’s. The rate of change values
noted in (a) are taken as the medians of the two histograms shown in (b). In
addition, the number of data points in the histograms is also given.

A. Drifting Irradiance Sensor

The most critical yet often unknown variable is the calibration
state of the irradiance sensor. We performed the PRCS method-
ology from Section II on the same PV system using different
sources of Gpoa data. Fig. 4(a) shows the ratio of various Gpoa
sensors with respect to a regularly calibrated system pyranome-
ter. As a guide to the eye, a no-change line at unity is given
by a solid line. The median of ten independently calibrated yet
different pyranometers and reference cell one at NREL show
flat behavior with respect to the calibrated system pyranometer,
indicating no long-term drift within the measurement uncer-
tainty. In contrast, two uncalibrated photodiodes and a second
reference cell show marked drift over 5 years at an annualized
linear rate of 1%–2%/year, although some sensors drift appears
nonlinear.

Fig. 4(b) displays the results using the different sensor and
using the PRPTC and PRCS metrics. The green bands indi-
cate the 1 σ standard deviation or 68% confidence interval
from a more conventional analysis of ten different methods
[13] that include various time-series analyses and independent
quarterly I–V measurements. When the calibrated sensors are
used, the degradation rates generally fall into the green band of
expected degradation regardless of the PR metric. In contrast, se-
rious deviations can be discerned for the drifting sensors. Using
PRPTC with a drifting Gpoa sensor results in grossly incorrect
performance assessment, but using PRCS results in degrada-
tion assessment close to the expected range. When using the
PRCS metric, applying a ±20% csi filter results in degradation
rates within the expected range, but applying a ±10% csi filter
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Fig. 4. (a) Ratio of various Gpoa sensors with respect to a calibrated reference
Gpoa pyranometer. Shown are the median of ten pyranometers in the same yard
at NREL, two reference cells, and two photodiodes. As guide to the eye, a
no-change line is given by a solid line. (b) Rate of change determined using
the various Gpoa sensors on the same system of Fig. 3(b). The red markers use
the respective Gpoa sensor while the blue markers use the clear-sky method.
The green interval is the band of degradation for this system (see text) and two
different csi filters are indicated by different symbols.

results in degradation rates somewhat outside the expected
range. In this example, the ±10% csi filter removes too much
data for the heavily degraded sensor and adds positive bias. In
the case of severe sensor degradation even as high as >1.5%/yr,
the PRCS metric allows for accurate assessment of the degra-
dation rate.

B. Data Shifts

Data shifts are often induced unintentionally in practice by
the replacement of hardware or changes in software configu-
ration. For example, the large shift displayed in Fig. 5(a) was
caused by the replacement of a dc power sensor. Fig. 6 com-
pares the degradation rate using three different techniques for
handling data shifts. The technique of “shift correction” adjusts
the data based on the minimization of the root mean square error
from a regression. [14] However, this requires knowledge of the
degradation curve that is commonly assumed to be linear, but
may take on a variety of shapes. The technique of “Removal”
uses the YOY approach to highlight and exclude a secondary
peak, see Fig. 5(b), caused by the data shift. The technique of
“two step” evaluates the data in two steps by separating the sec-
tions before and after the shift and then aggregating the YOY
deltas into a combined histogram. The SLS regression for the
two-step procedure is combined by evaluating the median of the

Fig. 5. (a) Data shift occurrence because of a maintenance event of the dc
measurement sensor. (b) Resulting secondary peak in the PRPTC year-on-year
histogram.

Fig. 6. YOY PRs and SLS for different data shift correction procedures com-
pared with evaluation with the uncorrected data. The green interval is the band
of degradation for this system based primarily on ten more conventional time
series analyses and independent tests such as I–V measurements.

two separate degradation rates combined with a pooled stan-
dard deviation. Fig. 6 compares the degradation rate using three
different data shift correction techniques. The green interval
is a band of degradation determined similarly to Section III-A.
Because the interval relies mostly on shift correction and regres-
sion approaches, the interval should be viewed as an approxi-
mate guideline rather than an accurate confidence interval of the
system performance. The greatest sensitivity to the data shift of
the uncorrected data is shown by the SLS. Although the YOY
approaches are biased by the data shift, the sensitivity is far less
compared with SLS. Because the removal method requires the
application of the YOY method, the SLS is not applicable and
therefore absent from the “Removal” dataset in Fig. 6. Within
the uncertainty, the data shift correction methods appear to be
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Fig. 7. (a) PV system in southern California exhibiting substantial seasonal
soiling intervals some marked by arrows. (b) Results of the YOY approach
compared with a SLS regression approach.

approximately equivalent for the performance metrics although
the YOY methods appear perhaps slightly more consistent. In
reality, most data shifts are not as pronounced and easily de-
tectable as in this example, in which case the sensitivity of the
SLS regression can be of considerable concern.

C. Soiling

Soiling has seen an increased interest in recent years because
of its significant impact on the project economics in some loca-
tions. Fig. 7 shows the ac power from a PV system in southern
California that exhibits considerable soiling intervals, some of
which are indicated by arrows. Reversible performance changes
can introduce bias into degradation analysis. Linear methods
such as SLS regression or quantile regression are particularly
sensitive to bias resulting from anomalous performance at the
beginning or end of the evaluation period, which is known in
statistics as high leverage. In addition, SLS methods are sensi-
tive to bias due to the largest reversible fluctuations caused by
soiling.

To obtain an unbiased performance assessment with linear
methods, the soiling events would have to be carefully removed
from time-series data requiring detailed knowledge from a soil-
ing station, where one module, for example, is permitted to
natural soil, while another one is cleaned on a regular basis.
Fig. 7 highlights the importance of using YOY methods instead
of linear regression to analyze time-series data that has been
affected by soiling. Applying the YOY approach for both PR
methods reduces error associated with soiling, see Fig. 7(b),

Fig. 8. (a) Two PV systems located near Pensacola, Florida that showed more
partly cloudy days. (b) Data percentage impact of the described filters for the
Florida systems and a comparable system at NREL.

especially seasonally occurring soiling trends, as shown before
[4].

D. Cloudy Climates

With the emphasis on clear-sky conditions, it is important to
demonstrate how the proposed method performs in locations
where cloudy conditions occur more often. Significant installed
PV capacity and frequent partly cloudy conditions in Florida
make this an excellent region for demonstrating the effective-
ness of the methods in lower irradiance climates, as displayed
in the inset of Fig. 8(a). We applied the proposed method to
two systems on a school building near Pensacola, FL, that some
of the authors evaluated in 2012. Fig. 8(a) shows that the pro-
posed method resulted in very good agreement with the more
traditional time-series approach of the earlier evaluation [15]. In
addition, we provide the data percentage impact of the described
filters for the systems in Florida in comparison with a similar
system at NREL during the same 4.5 years of operation. None
of the systems experienced major operational outages or signif-
icant inverter clipping. It should be noted that these pie charts
may differ depending on location, design, operational consis-
tency, and data quality. The majority of the data is removed due
to low irradiance or night time filter. The number of remain-
ing data points and the impact of the outage and clipping filter
are approximately the same for both systems. Even with the
cloudier conditions leading to greater csi filtering, the Florida
system still had sufficient remaining data to enable successful
analysis. However, longer evaluation periods may be required
as the cloudiness increases.

E. Nonlinearities

The implicit assumption in the analysis above is the linearity
of the long-term degradation curve. However, PV degradation
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Fig. 9. Nonlinear trend for a heterojunction crystalline silicon (x-Si) system
using the PRCS metric. The time series is evaluated in 2 year increments along
with cumulative total degradation rates using multiple performance metrics.

Fig. 10. Comparison of the various systems at NREL using the year-on-year
approach using PRCS and PRPTC contrasted to a quarterly report (Qreport)
that consists of ten more conventional time-series analysis and independent
tests such as I–V measurements. The number above each system indicates the
systems’ age in years.

may not be linear over the life of the system. Depending on the
underlying degradation mechanisms, the degradation curve of a
PV system may exhibit substantial deviation from linearity [2].
In the case of suspected nonlinearity, the entire datasets can be
divided into shorter sections, as illustrated in Fig. 9. This sys-
tem, which was installed at the end of 2007, exhibited a higher
degradation in the first 2 years than in subsequent years using
PRCS , which was aggregated in 7 days [16]. Because of field
upgrades, during which time the system was not field exposed,
a gap on the time axis is present. In addition, the degradation
rates for the entire dataset using different performance metrics
are also displayed. Even as the uncertainties for the 3 metrics
overlap, the YOY methods show a degradation rate that is closer
to the year 3–9 behavior than the SLS regression.

IV. APPLICATIONS

A. Validation With NREL PV Systems

NREL maintains an array of PV systems representing many
PV module technologies and an operating history >10 years. In
addition to continuous monitoring, the PV systems are charac-
terized by periodic I–V curve measurements, infrared imaging,
and visual inspection. NREL prepares quarterly reports on the

Fig. 11. Aggregated degradation rates derived from the PRCS YOY method
for a fleet of systems partitioned by technology, (a) heterojunction, (b) interdig-
itated backcontact, (c) and all other x-Si.

performance of each PV system based on time-series analysis
using a variety of methods. The results of the most recent report
were compared with the results of a new study based on PRCS
and PRPTC normalization and YOY analysis. Fig. 10 shows
good agreement between the methods used in the quarterly re-
port and the methods outlined in Section II.

B. PV Fleet Roll-Up

The PRCS clear-sky method described in Section II was ap-
plied to PV electricity-production data from a group of 486
inverters to demonstrate the wide applicability of the method.
The analysis was performed by SunPower using software tools
shared between NREL and SunPower. The PV systems were
commissioned between 2006 and 2011, with a mean operating
age of 7.3 years and total STC capacity of 230 MW. The data
represent one of the largest sets of PV system time-series anal-
ysis in the literature, and the minimum age of 6 years reduces
the impact of LID and other short-term stabilization effects. The
data presented in [17] overlap in part with the data presented
in Fig. 11, with a critical difference that in this paper clear sky
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models of sensor values are used instead of raw measured sensor
data for normalizing PV power. As PV systems age, they are
more likely to accumulate outages or degradation in irradiance
or temperature sensors, so the methods presented in Section II
are expected to grow in importance as time-series data on older
systems become available. Degradation analysis was performed
for each PV system, and statistics were computed for the popu-
lation of PV systems based on the module technology (see Fig
11). The median degradation rate for PV systems with hetero-
junction (HJ) modules is similar to a more detailed HJ system
investigation by Jordan et al.[16], while the fleet of interdigi-
tated back contact (IBC) modules showed a statistically signif-
icant lower rate of change than the HJ and the fleet of other
crystalline silicon (x-Si) systems. Distilling further statistically
significant trends was difficult because of the convolution of the
time series, technology, temperature, and mounting differences
and awaits further investigation.

V. CONCLUSION

We present a robust methodology for estimating the degra-
dation rate of PV systems by combining the YOY method with
clear-sky modeling. The clear-sky normalization step prevents
bias due to poor maintenance or irregular calibration of irra-
diance and temperature sensors. The filtering approach miti-
gates bias due to inverter clipping and temporary outages as
well as noise due to nonuniform irradiance. The YOY analy-
sis limits the impact of data shifts, soiling, and nonlinearity as
compared with linear methods. When analyzing high-quality
data from PV systems at NREL, the proposed methodology
yielded similar degradation rate estimates to those published
previously. Applying the robust methodology to a fleet of PV
systems, we were able to discriminate between the long-term
degradation behavior of different technologies including HJ
and IBC.
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